Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 13 de 13
Фильтр
1.
Multidisciplinary Science Journal ; 4(1), 2022.
Статья в португальский | Scopus | ID: covidwho-2256037

Реферат

The inflammatory response/ischemic damage relationship is a prerequisite for the initiation of the process of adaptation of the post-infarction cardiac tissue, in which the SDF-1/CXCR4 signaling plays a central role in tissue repair. This study aimed to investigate the modulation exerted by the SDF-1/CXCR4 axis on the inflammatory response after ST-segment elevation acute myocardial infarction (STEMI). Therefore, we developed Bayesian Networks from microarray (GEO) data and evaluated the expression of transcripts of interest in patients with STEMI by qPCR. In the chronic and anti-inflammatory scenario, we verified a relationship between proteins involved in tissue remodeling and the blockade of apoptotic pathways. The expression levels of the transcripts evaluated were increased in the initial moments after the infarction. In conclusion, the effects promoted by the SDF-1/CXCR4 interaction can be modulated according to the immunological profile, directly influencing its adaptive and cardioprotective effects. Therefore, we believe that students can contribute to the awareness of family and friends about COVID-19 and fake news. © 2023 Multidisciplinary Science Journal. All rights reserved.

2.
Elife ; 122023 03 22.
Статья в английский | MEDLINE | ID: covidwho-2281087

Реферат

COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.


Тема - темы
COVID-19 , Humans , COVID-19/complications , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Autoimmunity , Blood Coagulation , Disease Progression
3.
Front Microbiol ; 13: 1111930, 2022.
Статья в английский | MEDLINE | ID: covidwho-2230161

Реферат

Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.

4.
Metabolism ; 133: 155236, 2022 08.
Статья в английский | MEDLINE | ID: covidwho-2131881

Реферат

BACKGROUND: COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS: To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS: We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS: The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.


Тема - темы
COVID-19 , Insulin , Interferon Regulatory Factor-1 , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , HEK293 Cells , Humans , Insulin/metabolism , Interferon Regulatory Factor-1/metabolism , Male , Mice , Mice, Transgenic , Obesity/metabolism , Obesity/pathology , SARS-CoV-2 , Signal Transduction
5.
J Leukoc Biol ; 111(6): 1159-1173, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-2075036

Реферат

Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.


Тема - темы
COVID-19 , Virus Diseases , Cytokines , Humans , Inflammation Mediators , Neutrophil Activation , Neutrophils , Virus Diseases/pathology
6.
Int J Bioprint ; 8(4): 616, 2022.
Статья в английский | MEDLINE | ID: covidwho-2056642

Реферат

While the tension of COVID-19 is still increasing, patients who recovered from the infection are facing life-threatening consequences such as multiple organ failure due to the presence of angiotensin-converting enzyme 2 receptor in different organs. Among all the complications, death caused by respiratory failure is the most common because severe acute respiratory syndrome coronavirus 2 infects lung's type II epithelial, mucociliary, and goblet cells that eventually cause pneumonia and acute respiratory distress syndrome, which are responsible for the irreversible lung damage. Risk factors, such as age, comorbidities, diet, and lifestyle, are associated with disease severity. This paper reviews the potential of three-dimensional bioprinting in printing an efficient organ for replacement by evaluating the patient's condition.

7.
Front Cell Infect Microbiol ; 12: 845368, 2022.
Статья в английский | MEDLINE | ID: covidwho-1793038

Реферат

Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.


Тема - темы
Coronavirus Infections , Coronavirus , Autophagy/physiology , Coronavirus/physiology , Coronavirus Infections/pathology , Humans , Inflammation , Viral Load , Virus Replication/physiology
9.
European Journal of Immunology ; 51:129-129, 2021.
Статья в английский | Web of Science | ID: covidwho-1717120
10.
Regen Ther ; 18: 447-456, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1440332

Реферат

Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.

11.
Pak J Med Sci ; 37(5): 1536-1539, 2021.
Статья в английский | MEDLINE | ID: covidwho-1326005

Реферат

A new predictive criterion is being proposed for the determination of cytokine storm (CS) in COVID-19 (COVID-CS). It is comprised of results of laboratory that associate the pro-inflammatory status, systemic cell death, multi-organ tissue damage, and pre-renal electrolyte imbalance. The data identifies the patients' stay in hospitals and their mortality with the relevance of hyper-inflammation and tissue damage during the CS. The criteria can be readily used in clinical practice to determine the need for an early therapeutic regimen, block the hyper-immune response and possibly decrease mortality. It helps to understand the nature of the virus by following a specific criterion to predict the disease. The SARS-CoV-2 tells us in few days what nature has decided for the patient i.e., recovery, death or permanent disability.

12.
Eur J Clin Microbiol Infect Dis ; 40(5): 905-919, 2021 May.
Статья в английский | MEDLINE | ID: covidwho-1002106

Реферат

COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Angiotensin-converting enzyme 2 (ACE2) is not only an enzyme but also a functional receptor on cell surfaces through which SARS-CoV-2 enters the host cells and is highly expressed in the heart, kidneys, and lungs and shed into the plasma. ACE2 is a key regulator of the renin-angiotensin-aldosterone system (RAAS). SARS-CoV-2 causes ACE/ACE2 balance disruption and RAAS activation, which leads ultimately to COVID-19 progression, especially in patients with comorbidities, such as hypertension, diabetes mellitus, and cardiovascular disease. Therefore, ACE2 expression may have paradoxical effects, aiding SARS-CoV-2 pathogenicity, yet conversely limiting viral infection. This article reviews the existing literature and knowledge of ACE2 in COVID-19 setting and focuses on its pathophysiologic involvement in disease progression, clinical outcomes, and therapeutic potential.


Тема - темы
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal/therapeutic use , COVID-19/epidemiology , COVID-19/therapy , Comorbidity , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Polymorphism, Genetic , Renin-Angiotensin System/physiology , Spike Glycoprotein, Coronavirus/immunology
13.
Int J Mol Sci ; 21(13)2020 Jun 30.
Статья в английский | MEDLINE | ID: covidwho-635823

Реферат

Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.


Тема - темы
Severe acute respiratory syndrome-related coronavirus/physiology , Vimentin/metabolism , Virus Diseases/pathology , Antibodies/immunology , Antibodies/metabolism , Antibodies/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Vimentin/chemistry , Vimentin/immunology , Virus Diseases/drug therapy , Virus Diseases/metabolism , Virus Replication/drug effects
Критерии поиска